Boletin de la Sociedad Matematica Mexicana,
2024,
цитирований: 0,
doi.org,
Abstract
AbstractIn this paper, we consider the Diophantine equation $$\lambda _1U_{n_1}+\cdots +\lambda _kU_{n_k}=wp_1^{z_1} \ldots p_s^{z_s},$$
λ
1
U
n
1
+
⋯
+
λ
k
U
n
k
=
w
p
1
z
1
…
p
s
z
s
,
where $$\{U_n\}_{n\ge 0}$$
{
U
n
}
n
≥
0
is a fixed non-degenerate linear recurrence sequence of order greater than or equal to 2; w is a fixed non-zero integer; $$p_1,\dots ,p_s$$
p
1
,
⋯
,
p
s
are fixed, distinct prime numbers; $$\lambda _1,\dots ,\lambda _k$$
λ
1
,
⋯
,
λ
k
are strictly positive integers; and $$n_1,\dots ,n_k,z_1,\dots ,z_s$$
n
1
,
⋯
,
n
k
,
z
1
,
⋯
,
z
s
are non-negative integer unknowns. We prove the existence of an effectively computable upper-bound on the solutions $$(n_1,\dots ,n_k,z_1,\dots ,z_s)$$
(
n
1
,
⋯
,
n
k
,
z
1
,
⋯
,
z
s
)
. In our proof, we use lower bounds for linear forms in logarithms, extending the work of Pink and Ziegler (Monatshefte Math 185(1):103–131, 2018), Mazumdar and Rout (Monatshefte Math 189(4):695–714, 2019), Meher and Rout (Lith Math J 57(4):506–520, 2017), and Ziegler (Acta Arith 190:139–169, 2019).