Пожалуйста, указывайте в поисковой строке слова и сочетания,
которые могут быть в названиях публикаций или в фамилиях авторов.
При этом данные, которые можно указать в фильтрах,
в поисковую строку вводить не стоит (год, журнал, издательство).
Platinum (Pt)-based catalysts are considered as the most active catalysts for the oxygen reduction reaction (ORR). However, their applications have remained limited because of the high cost of Pt, and developing catalysts with low Pt contents is a challenge. Herein, a highly active catalyst (Pt–COF800) is constructed for the ORR by immobilizing hierarchical Pt subnano- and nanoparticles on covalent organic framework (COF)-derived carbon. The catalyst shows excellent activity in alkaline conditions. The physical characterization demonstrates low nuclear Pt atoms and nanoparticles and confirms the role of heterogeneous active sites. This work paves the way for the construction of functional porous carbon materials with dual-scale Pt clusters and may be applied to industrial catalytic reactions.
As a de novo design of artificial enzymes, peptide assembly is receiving enormous attention. However, the development of durable peptide-based biocatalysts that can resist undesirable deformation and loss of function in non-native environments is challenging. Herein, a covalently self-assembled, peptide-based hydrolase mimic (referred to as a nanopepzyme) with exceptional stability regardless of the changes in the external environment is reported. The photocrosslinking of decapeptides, YYHHHHHHYY, leads to the formation of well-defined nanospheres with multiple catalytic histidine residues protruding from their surfaces. The nanopepzyme not only exhibits extraordinary long-term stability even after 6 months but also maintains its structures under adverse environmental conditions (pH, temperature, ion strength, and organic solvents). In addition, the nanopepzyme demonstrates hydrolase-like activity and is effective as a significantly durable biocatalyst, as verified by the model reactions following incubation under various harsh conditions. This study expands the scope of peptide assembly for the preparation of peptide-based biocatalysts that can be applied in considerably harsh foreign environments.
The pathogenesis of nonalcoholic fatty liver disease (NAFLD) is multifactorial and composite, with the disorder of lipid metabolism-induced lipotoxicity being one of the main risk factors. Atorvastatin (AT), the most widely prescribed lipid-lowering drug, has pleiotropic actions benefiting NAFLD treatment. However, low absorption rate in the gut and potential disruption of AT on gut flora hindered its further applications. Notably, gut dysbiosis is involved in and is thus a promising management strategy for NAFLD. In this study, we constructed a prebiotic-based AT nanoamorphous (PANA) to improve the efficacy of AT against NAFLD by retrieving liver and gut health. After oral administration, PANA showed superior drug accumulation in the liver tissue compared with pure AT. Moreover, PANA intervention effectively restored gut healthiness, indicated by reconstructed gut flora, and improved intestinal immunity, barrier integrity, and inflammation. Consequently, compared with AT, PANA treatment caused profound inhibition of weight gain and fat deposition, decreased plasma lipid levels, and alleviated hepatic steatosis and liver inflammation. The transcriptome analysis in the gut and liver tissues identified improved immunity and inflammation as potential mechanisms. This study suggests a promising strategy to treat NAFLD, assisted with nanotechnology in synergy with functional biomaterials.