Найдено 207
Heterostructured Mo 2 N–Mo 2 C Nanoparticles Coupled with N‐Doped Carbonized Wood to Accelerate the Hydrogen Evolution Reaction
Bang J., Moon I.K., Kim Y., Oh J.
Q1
Wiley
Small Structures, 2023, цитирований: 40,
open access Open access ,
doi.org
Reconstructing Tumor Microenvironment Using Photoresponsive Cyanobacteria to Reversal Chemoresistance for Robust Chemotherapy
He H., Zhu D., Ma A., Ren J., Chen Z., Ran H., Li Z., Qin R., Liang R., Liu L., Cai L.
Q1
Wiley
Small Structures, 2023, цитирований: 2,
open access Open access ,
doi.org
Cu–Pd Bimetallic Gas Diffusion Electrodes for Electrochemical Reduction of CO 2 to C 2+ Products
Zhu C., Chen A., Mao J., Wu G., Li S., Dong X., Li G., Jiang Z., Song Y., Chen W., Wei W.
Q1
Wiley
Small Structures, 2023, цитирований: 24,
open access Open access ,
doi.org
Immobilization of Platinum Nanoparticles on Covalent Organic Framework‐Derived Carbon for Oxygen Reduction Catalysis
Li X., Yang S., Liu M., Liu S., Miao Q., Duan Z., Qiao P., Lin J., Sun F., Xu Q., Jiang Z.
Q1
Wiley
Small Structures, 2023, цитирований: 20,
open access Open access ,
doi.org, Abstract
Platinum (Pt)-based catalysts are considered as the most active catalysts for the oxygen reduction reaction (ORR). However, their applications have remained limited because of the high cost of Pt, and developing catalysts with low Pt contents is a challenge. Herein, a highly active catalyst (Pt–COF800) is constructed for the ORR by immobilizing hierarchical Pt subnano- and nanoparticles on covalent organic framework (COF)-derived carbon. The catalyst shows excellent activity in alkaline conditions. The physical characterization demonstrates low nuclear Pt atoms and nanoparticles and confirms the role of heterogeneous active sites. This work paves the way for the construction of functional porous carbon materials with dual-scale Pt clusters and may be applied to industrial catalytic reactions.
Covalently Self‐Assembled Peptide‐Based Hydrolase Mimic for Realizing Exceptional Catalytic Longevity in Foreign Environments
Hur Y., Min K.
Q1
Wiley
Small Structures, 2023, цитирований: 5,
open access Open access ,
doi.org, Abstract
As a de novo design of artificial enzymes, peptide assembly is receiving enormous attention. However, the development of durable peptide-based biocatalysts that can resist undesirable deformation and loss of function in non-native environments is challenging. Herein, a covalently self-assembled, peptide-based hydrolase mimic (referred to as a nanopepzyme) with exceptional stability regardless of the changes in the external environment is reported. The photocrosslinking of decapeptides, YYHHHHHHYY, leads to the formation of well-defined nanospheres with multiple catalytic histidine residues protruding from their surfaces. The nanopepzyme not only exhibits extraordinary long-term stability even after 6 months but also maintains its structures under adverse environmental conditions (pH, temperature, ion strength, and organic solvents). In addition, the nanopepzyme demonstrates hydrolase-like activity and is effective as a significantly durable biocatalyst, as verified by the model reactions following incubation under various harsh conditions. This study expands the scope of peptide assembly for the preparation of peptide-based biocatalysts that can be applied in considerably harsh foreign environments.
Prebiotic‐Based Nanoamorphous Atorvastatin Attenuates Nonalcoholic Fatty Liver Disease by Retrieving Gut and Liver Health
Cui J., Li R., Ma X., Yu H., Luo Z., Du P., Ren L., Ding X., Guo X., Zheng W., Jiang J., Che Y., Wang L.
Q1
Wiley
Small Structures, 2023, цитирований: 1,
open access Open access ,
doi.org, Abstract
The pathogenesis of nonalcoholic fatty liver disease (NAFLD) is multifactorial and composite, with the disorder of lipid metabolism-induced lipotoxicity being one of the main risk factors. Atorvastatin (AT), the most widely prescribed lipid-lowering drug, has pleiotropic actions benefiting NAFLD treatment. However, low absorption rate in the gut and potential disruption of AT on gut flora hindered its further applications. Notably, gut dysbiosis is involved in and is thus a promising management strategy for NAFLD. In this study, we constructed a prebiotic-based AT nanoamorphous (PANA) to improve the efficacy of AT against NAFLD by retrieving liver and gut health. After oral administration, PANA showed superior drug accumulation in the liver tissue compared with pure AT. Moreover, PANA intervention effectively restored gut healthiness, indicated by reconstructed gut flora, and improved intestinal immunity, barrier integrity, and inflammation. Consequently, compared with AT, PANA treatment caused profound inhibition of weight gain and fat deposition, decreased plasma lipid levels, and alleviated hepatic steatosis and liver inflammation. The transcriptome analysis in the gut and liver tissues identified improved immunity and inflammation as potential mechanisms. This study suggests a promising strategy to treat NAFLD, assisted with nanotechnology in synergy with functional biomaterials.
Emerging Applications of Aggregation‐Induced Emission Luminogens in Bacterial Biofilm Imaging and Antibiofilm Theranostics
Liu P., Li D., Kang M., Pan Y., Wen Z., Zhang Z., Wang D., Tang B.Z.
Q1
Wiley
Small Structures, 2023, цитирований: 12,
open access Open access ,
doi.org
Electronic Modulation of Semimetallic Electrode for 2D van der Waals Devices
Kim T., Lim J., Byeon J., Cho Y., Kim W., Hong J., Jin Heo S., Eun Jang J., Kim B., Hong J., Pak S., Cha S.
Q1
Wiley
Small Structures, 2023, цитирований: 12,
open access Open access ,
doi.org
A Comparison Study of the Electrocatalytic Sulfur Reduction Activity on Heteroatom‐Doped Graphene for Li–S Battery
Zhang W., Li Y., Lv H., Xie S., Zhu J., Xu J., Jin H., Kong X., Jin S., Wang H., Wu X., Ji H.
Q1
Wiley
Small Structures, 2023, цитирований: 34,
open access Open access ,
doi.org
A New Insight of Anti‐Solvent Electrolytes for Aqueous Zinc‐Ion Batteries by Molecular Modeling
Zhu Y., Hao J., Huang Y., Jiao Y.
Q1
Wiley
Small Structures, 2023, цитирований: 23,
open access Open access ,
doi.org
Co‐insertion of Water with Protons into Organic Electrodes Enables High‐Rate and High‐Capacity Proton Batteries
Su Z., Tang J., Chen J., Guo H., Wu S., Yin S., Zhao T., Jia C., Meyer Q., Rawal A., Ho J., Fang Y., Zhao C.
Q1
Wiley
Small Structures, 2023, цитирований: 28,
open access Open access ,
doi.org
Crystallization of Coccolith Calcite at Different Life‐Cycle Phases Exhibits Distinct Degrees of Cellular Confinement
Ben-Joseph O., de Haan D., Rechav K., Shimoni E., Levin-Zaidman S., Langer G., Probert I., Wheeler G.L., Gal A.
Q1
Wiley
Small Structures, 2023, цитирований: 2,
open access Open access ,
doi.org
Facile Synthesis of Zinc Indium Oxide Nanofibers Distributed with Low Content of Silver for Superior Antibacterial Activity
Zheng Z., Liang W., Lin R., Hu Z., Wang Y., Lu H., Zhong W., Shen S., Pan Y.
Q1
Wiley
Small Structures, 2023, цитирований: 34,
open access Open access ,
doi.org
Light‐Enhanced Conversion of CO 2 to Light Olefins: Basis in Thermal Catalysis, Current Progress, and Future Prospects
Zhu Y.F., Xie B., Amal R., Lovell E.C., Scott J.
Q1
Wiley
Small Structures, 2023, цитирований: 21,
open access Open access ,
Обзор, doi.org
Three‐Dimensional Manganese Oxide@Carbon Networks as Free‐Standing, High‐Loading Cathodes for High‐Performance Zinc‐Ion Batteries
Gao X., Zhang C., Dai Y., Zhao S., Hu X., Zhao F., Zhang W., Chen R., Zong W., Du Z., Dong H., Liu Y., He H., Li J., Parkin I.P., et. al.
Q1
Wiley
Small Structures, 2023, цитирований: 26,
open access Open access ,
doi.org
Growth of Boron Nitride Nanotube Over Al‐Based Active Catalyst and its Application in Thermal Management
He Q., Ding L., Wu L., Zhou Z., Wang Y., Xu T., Wang N., Zhang K., Wang X., Ding F., Zhang J., Yao Y.
Q1
Wiley
Small Structures, 2023, цитирований: 12,
open access Open access ,
doi.org
Optimizing Heterointerface of Co 2 P–Co x O y Nanoparticles within a Porous Carbon Network for Deciphering Superior Water Splitting
Huang G., Hu M., Xu X., Alothman A.A., Mushab M.S., Ma S., Shen P.K., Zhu J., Yamauchi Y.
Q1
Wiley
Small Structures, 2023, цитирований: 78,
open access Open access ,
doi.org
Atomically Dispersed Alkaline‐Earth Metals as Active Centers for CO 2 Electroreduction to Exclusively Produce Formate
Wu D., Wu J., Lv P., Li H., Chu K., Ma D.
Q1
Wiley
Small Structures, 2023, цитирований: 36,
open access Open access ,
doi.org
Intercalation Hosts for Multivalent‐Ion Batteries
Lakhnot A.S., Panchal R.A., Datta J., Mahajani V., Bhimani K., Jain R., Datta D., Koratkar N.
Q1
Wiley
Small Structures, 2022, цитирований: 11,
open access Open access ,
doi.org
Hierarchically Engineered Artificial Lamellar Bone with High Strength and Toughness
Zhao Y., Zheng J., Xiong Y., Wang H., Yang S., Sun X., Zhao L., Mikos A.G., Wang X.
Q1
Wiley
Small Structures, 2022, цитирований: 16,
open access Open access ,
doi.org
Droplet‐Based Microfluidics Platform for the Synthesis of Single‐Atom Heterogeneous Catalysts
Moragues T., Mitchell S., Faust Akl D., Pérez-Ramírez J., deMello A.
Q1
Wiley
Small Structures, 2022, цитирований: 16,
open access Open access ,
doi.org
Harvesting the Gas Molecules by Bioinspired Design of 1D/2D Hybrids Toward Sensitive Acetone Detecting
Yan M., Gao X., Han X., Zhou D., Lin Y., Chen W., Xue Z., Wu Y.
Q1
Wiley
Small Structures, 2022, цитирований: 4,
open access Open access ,
doi.org
Direct Ink Writing of 3D Zn Structures as High‐Capacity Anodes for Rechargeable Alkaline Batteries
Zhu C., Schorr N.B., Qi Z., Wygant B.R., Turney D.E., Yadav G.G., Worsley M.A., Duoss E.B., Banerjee S., Spoerke E.D., van Buuren A., Lambert T.N.
Q1
Wiley
Small Structures, 2022, цитирований: 15,
open access Open access ,
doi.org
Low Tortuosity 3D‐Printed Structures Enhance Reaction Kinetics in Electrochemical Energy Storage and Electrocatalysis
Xue X., Lin D., Li Y.
Q1
Wiley
Small Structures, 2022, цитирований: 7,
open access Open access ,
doi.org
Double Crosslinked Polymer Electrolyte by C–S–C Group and Metal–Organic Framework for Solid‐State Lithium Batteries
Xu R., Xu S., Wang F., Xiao R., Tang P., Zhang X., Bai S., Sun Z., Li F.
Q1
Wiley
Small Structures, 2022, цитирований: 24,
open access Open access ,
doi.org
Cobalt Бета
ru en