Найдено 125
Regression models of Pearson correlation coefficient
Dufera A.G., Liu T., Xu J.
Q3
Taylor & Francis
Statistical Theory and Related Fields, 2023, цитирований: 25,
open access Open access ,
PDF, doi.org
A novel nonparametric mixture model for the detection pattern of COVID-19 on Diamond Princess cruise
Ma H., Qin J., Chen F., Zhou Y.
Q3
Taylor & Francis
Statistical Theory and Related Fields, 2022, цитирований: 0,
open access Open access ,
PDF, doi.org
Locally R-optimal designs for a class of nonlinear multiple regression models
He L., Yue R.
Q3
Taylor & Francis
Statistical Theory and Related Fields, 2022, цитирований: 0,
open access Open access ,
PDF, doi.org
Availability and cost-benefit evaluation for a repairable retrial system with warm standbys and priority
Kang J., Hu L., Peng R., Li Y., Tian R.
Q3
Taylor & Francis
Statistical Theory and Related Fields, 2022, цитирований: 6,
open access Open access ,
PDF, doi.org
Rates of convergence of powered order statistics from general error distribution
Zou Y., Lu Y., Peng Z.
Q3
Taylor & Francis
Statistical Theory and Related Fields, 2022, цитирований: 1,
open access Open access ,
PDF, doi.org
Application of neural network to model rainfall pattern of Ethiopia
Atomsa G.A., Zhou Y.
Q3
Taylor & Francis
Statistical Theory and Related Fields, 2022, цитирований: 1,
open access Open access ,
PDF, doi.org
A short note on fitting a single-index model with massive data
Jiang R., Peng Y.
Q3
Taylor & Francis
Statistical Theory and Related Fields, 2022, цитирований: 1,
open access Open access ,
PDF, doi.org
Bayesian analysis for the Lomax model using noninformative priors
He D., Sun D., Zhu Q.
Q3
Taylor & Francis
Statistical Theory and Related Fields, 2022, цитирований: 4,
open access Open access ,
PDF, doi.org
A discussion of ‘A selective review on calibration information from similar studies’
Chen J.
Q3
Taylor & Francis
Statistical Theory and Related Fields, 2022, цитирований: 0,
open access Open access ,
Обзор, PDF, doi.org
Rejoinder on “A selective review of statistical methods using calibration information from similar studies”
Qin J., Liu Y., Li P.
Q3
Taylor & Francis
Statistical Theory and Related Fields, 2022, цитирований: 1,
open access Open access ,
Обзор, PDF, doi.org
Variable selection in finite mixture of median regression models using skew-normal distribution
Zeng X., Ju Y., Wu L.
Q3
Taylor & Francis
Statistical Theory and Related Fields, 2022, цитирований: 0,
open access Open access ,
PDF, doi.org
Model averaging for generalized linear models in fragmentary data prediction
Yuan C., Wu Y., Fang F.
Q3
Taylor & Francis
Statistical Theory and Related Fields, 2022, цитирований: 3,
open access Open access ,
PDF, doi.org, Abstract
Fragmentary data is becoming more and more popular in many areas which brings big challenges to researchers and data analysts. Most existing methods dealing with fragmentary data consider a continuous response while in many applications the response variable is discrete. In this paper we propose a model averaging method for generalized linear models in fragmentary data prediction. The candidate models are fitted based on different combinations of covariate availability and sample size. The optimal weight is selected by minimizing the Kullback-Leibler loss in the com?pleted cases and its asymptotic optimality is established. Empirical evidences from a simulation study and a real data analysis about Alzheimer disease are presented.
Posterior propriety of an objective prior for generalized hierarchical normal linear models
Lin C., Sun D., Song C.
Q3
Taylor & Francis
Statistical Theory and Related Fields, 2022, цитирований: 1,
open access Open access ,
PDF, doi.org
A selective review of statistical methods using calibration information from similar studies
Qin J., Liu Y., Li P.
Q3
Taylor & Francis
Statistical Theory and Related Fields, 2022, цитирований: 1,
open access Open access ,
Обзор, PDF, doi.org
Moderate deviation principle for stochastic reaction-diffusion systems with multiplicative noise and non-Lipschitz reaction
Yang J.
Q3
Taylor & Francis
Statistical Theory and Related Fields, 2022, цитирований: 0,
open access Open access ,
PDF, doi.org
A discussion on “A selective review of statistical methods using calibration information from similar studies” by Qin, Liu and Li
Han P.
Q3
Taylor & Francis
Statistical Theory and Related Fields, 2022, цитирований: 1,
open access Open access ,
Обзор, PDF, doi.org
A discussion on “A selective review of statistical methods using calibration information from similar studies”
Zhou L., Song P.X.
Q3
Taylor & Francis
Statistical Theory and Related Fields, 2022, цитирований: 0,
open access Open access ,
Обзор, PDF, doi.org
Discussion of “A selective review of statistical methods using calibration information from similar studies” and some remarks on data integration
Lawless J.F.
Q3
Taylor & Francis
Statistical Theory and Related Fields, 2022, цитирований: 0,
open access Open access ,
Обзор, PDF, doi.org
Discussion of ‘A selective review of statistical methods using calibration information from similar studies’
Ning J.
Q3
Taylor & Francis
Statistical Theory and Related Fields, 2022, цитирований: 0,
open access Open access ,
Обзор, PDF, doi.org
Bayesian penalized model for classification and selection of functional predictors using longitudinal MRI data from ADNI
Banik A., Maiti T., Bender A.
Q3
Taylor & Francis
Statistical Theory and Related Fields, 2022, цитирований: 1,
open access Open access ,
PDF, doi.org
A new result on recovery sparse signals using orthogonal matching pursuit
Chen X., Liu J., Chen J.
Q3
Taylor & Francis
Statistical Theory and Related Fields, 2022, цитирований: 3,
open access Open access ,
PDF, doi.org
A selective review of statistical methods using calibration information from similar studies
Qin J., Liu Y., Li P.
Q3
Taylor & Francis
Statistical Theory and Related Fields, 2022, цитирований: 4,
open access Open access ,
Обзор, PDF, doi.org
Optimal model averaging estimator for multinomial logit models
Jiang R., Wang L., Bai Y.
Q3
Taylor & Francis
Statistical Theory and Related Fields, 2022, цитирований: 3,
open access Open access ,
PDF, doi.org
Rejoinder on ‘A review of distributed statistical inference’
Gao Y., Liu W., Wang H., Wang X., Yan Y., Zhang R.
Q3
Taylor & Francis
Statistical Theory and Related Fields, 2022, цитирований: 0,
open access Open access ,
Обзор, PDF, doi.org
Discussion on ‘A review of distributed statistical inference’
Yu Y., Cheng G.
Q3
Taylor & Francis
Statistical Theory and Related Fields, 2022, цитирований: 0,
open access Open access ,
Обзор, PDF, doi.org
Cobalt Бета
ru en