Найдено 10
Optimal Control of Endemic Epidemic Diseases With Behavioral Response
Parino F., Zino L., Rizzo A.
IEEE Open Journal of Control Systems, 2024, цитирований: 1,
open access Open access ,
doi.org
Pareto-Optimal Event-Based Scheme for Station and Inter-Station Control of Electric and Automated Buses
PASQUALE C., SACONE S., SIRI S., FERRARA A.
IEEE Open Journal of Control Systems, 2024, цитирований: 0,
open access Open access ,
doi.org
A Control-Theoretical Zero-Knowledge Proof Scheme for Networked Control Systems
Fioravanti C., Hadjicostis C.N., Oliva G.
IEEE Open Journal of Control Systems, 2024, цитирований: 0,
open access Open access ,
doi.org
Novel Bounds for Incremental Hessian Estimation With Application to Zeroth-Order Federated Learning
Maritan A., Schenato L., Dey S.
IEEE Open Journal of Control Systems, 2024, цитирований: 0,
open access Open access ,
doi.org
A Multiplex Approach Against Disturbance Propagation in Nonlinear Networks with Delays
Xie S., Russo G.
IEEE Open Journal of Control Systems, 2024, цитирований: 1,
open access Open access ,
doi.org
On the Ratio of Reactive to Active Power in Wave Energy Converter Control
Said H.A., García-Violini D., Faedo N., Ringwood J.V.
IEEE Open Journal of Control Systems, 2024, цитирований: 4,
open access Open access ,
doi.org
Vibrational Stabilization of Cluster Synchronization in Oscillator Networks
Qin Y., Nobili A.M., Bassett D.S., Pasqualetti F.
IEEE Open Journal of Control Systems, 2023, цитирований: 5,
open access Open access ,
doi.org
Exploiting the Synchronization of Nonlinear Dynamics to Secure Distributed Consensus
Fioravanti C., Bonagura V., Oliva G., Hadjicostis C.N., Panzieri S.
IEEE Open Journal of Control Systems, 2023, цитирований: 3,
open access Open access ,
doi.org
Distributed Data-Driven Control of Network Systems
Celi F., Baggio G., Pasqualetti F.
IEEE Open Journal of Control Systems, 2023, цитирований: 5,
open access Open access ,
doi.org
Velocity Estimation of Robot Manipulators: An Experimental Comparison
Liu S.B., Giusti A., Althoff M.
IEEE Open Journal of Control Systems, 2023, цитирований: 5,
open access Open access ,
doi.org, Abstract
Accurate velocity information is often essential to the control of robot manipulators, especially for precise tracking of fast trajectories. However, joint velocities are rarely directly measured and instead estimated to save costs. While many approaches have been proposed for the velocity estimation of robot joints, no comprehensive experimental evaluation exists, making it difficult to choose the appropriate method. This paper compares multiple estimation methods running on a six degrees-of-freedom manipulator. We evaluate: 1) the estimation error using a ground-truth signal, 2) the closed-loop tracking error, 3) convergence behavior, 4) sensor fault tolerance, 5) implementation and tuning effort. To ensure a fair comparison, we optimally tune the estimators using a genetic algorithm. All estimation methods have a similar estimation error and similar closed-loop tracking performance, except for the nonlinear high-gain observer, which is not accurate enough. Sliding-mode observers can provide a precise velocity estimation despite sensor faults.
Cobalt Бета
ru en